O.P.Code: 19HS0830

R19

H.T.No.

12.06.2024

UTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech I Year I Semester Supplementary Examinations June-2024 ALGEBRA AND CALCULUS

(Common to all Branches)

Time: 3 Hours

Max. Marks: 60

(Answer all Five Units $5 \times 12 = 60$ Marks)

UNIT-I

	N		-2	-1	- 3	-1		
1	a Reduce the matrix	4 —	1	2	3	-1	into Echolon forms by CO1 II	6M
		1	1	0	1	1	into Echelon form by CO1 L1	
			0	1	1	-1		

using row transformations and find its rank.

b Solve completely the system of homogeneous equations **CO1 L1 6M**
$$x+2y+3z=0$$
, $3x+4y+4z=0$, $7x+10y+12z=0$

Reduce the Quadratic form
$$2x^2 + 2y^2 + 2z^2 - 2xy + 2xz - 2yz$$
 into CO1 L3 12M the canonical form by Orthogonal transformation and discuss its nature.

UNIT-II

3 a Verify Rolle's Theorem for the function
$$f(x) = \frac{\sin x}{e^x}$$
 in $(0, \pi)$ CO2 L4 6M
b Verify Cauchy's mean value theorem for $f(x) = \frac{\sin x}{e^x}$ in $(0, \pi)$ $\frac{-x}{e^x}$ CO2 L5 6M

b Verify Cauchy's mean value theorem for $f(x) = e^x$ and $g(x) = e^{-x}$

CO₂ 6M

in [a, b]

OR

b Obtain the Maclaurin's series expression for the function $f(x) = \cos x$

CO₂ **L6 6M**

5 a If
$$U = \log(x^3 + y^3 + z^3 - 3xyz)$$
 Prove that $\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 U = \frac{-9}{(x+y+z)^2}$. CO3 L5 6M

b If
$$u = \frac{x+y}{1-xy}$$
 and $\theta = \tan^{-1} x + \tan^{-1} y$, then find $\frac{\partial(u,\theta)}{\partial(x,y)}$.

CO₃ **6M**

- a Show that the functions u = xy + yz + zx, $v = x^2 + y^2 + z^2$ and CO₃ L1 **6M** w = x + y + z are functionally related. Find the relation between them.
 - b By using Lagrange's undetermined multipliers, find the minimum CO3 **6M** value for $x^2 + y^2 + z^2$ subject to the condition $xyz = a^3$.

UNIT-IV

7 a Evaluate
$$\int_{0}^{\pi} \sin^{8}\theta \cos^{4}\theta \ d\theta$$
 CO4 L5 6M

b Evaluate
$$\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} dx dy$$
 by changing into polar coordinates. **CO4 L5 6M**

OR

- 8 a Evaluate $\iint xy(x+y) dx dy$ over the region R bounded by $y=x^2$ and CO4 L5 6M y=x.
 - b Apply change of order of integration to evaluate $\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} dy dx$. CO4 L3 6M

UNIT-V

- 9 a Evaluate the integral $\int_{0}^{1} x^{2} \left[\log \left(\frac{1}{x} \right) \right]^{3} dx$ CO5 L5 6M
 - b Prove that $\beta(m, n) = 2 \int_{0}^{\frac{\pi}{2}} \sin^{2m-1}\theta \cdot \cos^{2n-1}\theta \ d\theta$ CO5 L3 6M

OR

10 a Prove that
$$\int_{0}^{1} \frac{x}{\sqrt{1-x^5}} dx = \frac{1}{5}\beta(\frac{2}{5}, \frac{1}{2})$$
 CO5 L3 6M

b Prove that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$

*** END ***